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Abstract

Firstly, a brief survey dealing with popular vortex-identification methods is presented. The most widely used local criteria (applied
point by point) – sharing a basis in the velocity-gradient tensor $u – are treated more thoroughly to recall their underlying ideas and
physical aspects. A large number of recent papers have pointed out various applicability limitations of these popular schemes and for-
mulated (explicitly or implicitly) new general requirements, for example: validity for compressible flows and variable-density flows, deter-
mination of the local intensity of swirling motion, vortex-axis identification, non-local properties, ability to provide the same results in
different rotating frames, etc. Other quite natural requirements are pointed out and added to those already mentioned. Secondly, the
vortex-identification outcome of the proposed triple decomposition of the relative motion near a point is presented. The triple decom-
position of motion – based on the extraction of a so-called ‘‘effective’’ pure shearing motion – has been motivated by the fact that vor-
ticity cannot distinguish between pure shearing motions and the actual swirling motion of a vortex. This decomposition technique results
in two additive vorticity parts (and, analogously, in two additive strain-rate parts) of distinct nature, namely the shear component and the
residual one. The residual vorticity represents a direct measure of the actual swirling motion of a vortex. The new kinematic vortex-iden-
tification method is discussed on the background of previous methods and general vortex-identification requirements (illustrative exam-
ples are included).
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Flow modelling and numerical simulation of turbulent
and/or complex vortical flows still lack a generally accept-
able definition of a vortex though the understanding of
vortex dynamics (i.e. generation, evolution, interaction,
and decay of vortical structures) should be based on objec-
tive and unambiguous detection schemes. There is no
doubt that the physical reasoning for these schemes plays
a crucial role.

What is a vortex? Though a vortex intuitively represents
a distinct flow phenomenon, the answer to this question is
neither simple nor unique, e.g. Lugt (1983). He presents
one of the intuitive definitions of a vortex as follows: a vor-
tex is the rotating motion of a multitude of material parti-
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cles around a common centre. These intuitive definitions
often depict a vortex in terms of closed or spiralling stream-
lines or pathlines, local pressure minima, and isovorticity
contours and surfaces. However, spiralling streamlines or
pathlines are obtained just for an observer moving with
the vortex to be identified, and the existence of a local pres-
sure minimum does not guarantee the existence of a vortex
(and vice versa).

Vorticity tensor, as a Galilean invariant quantity (i.e.
independent of the translational velocity of an observer)
expressing an average angular velocity of fluid elements,
appears as one of the most natural choices for a vortex-
identification criterial measure. However, it has been
recently emphasized by many authors that vorticity is not
suitable for the identification of a vortex as it cannot distin-
guish between pure shearing motions and the actual swirl-
ing motion of a vortex (Jeong and Hussain, 1995; Kida
and Miura, 1998; Cucitore et al., 1999). This property of
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Nomenclature

A additive part of $u

C vortex-strength parameter in (29)
D jet-nozzle diameter
K shearing-strength parameter in (28)
L, L1, L2 velocity magnitudes, see Fig. 6
p pressure
P arbitrary point of the flow field
Q orthogonal linear transformation
Q second invariant of $u

r radius
R third invariant of $u

s principal rate of strain in 2D, see (13) and (14)
S, Sij strain-rate tensor, symmetric part of $u

t time
u, ui velocity vector
u, v, w components of the velocity vector
UC crossflow velocity
Vtangential tangential velocity
x; y; z coordinates

Greek symbols

a; b; c rotation angles
a1, a2 characteristic angles in Fig. 2 associated with

different vorticity components
b1, b2 characteristic angles in Fig. 2 associated with

different strain-rate components
C circulation
D vortex-identification criterial quantity defined

by (2)
k eigenvalue

k1; k2; k3 ordered eigenvalues, k1 P k2 P k3

m kinematic viscosity
q density
r shearing parameter in (28)
x vorticity-tensor component in 2D, see (13) and

(15)
X, Xij vorticity tensor, antisymmetric part of $u

Subscripts and superscripts

BRF basic reference frame
, subscript comma denoting differentiation (e.g.

ui,j � oui/oxj)
EL elongation
SH shearing motion, shear component
SHEARING shearing motion described by (28)
RES residual component
RR rigid-body rotation
VORTEX vortical motion described by (29)
x; y; z partial derivatives (e.g. ux � ou/ox)
T transpose

* new Cartesian coordinate (after rotation)

Other symbols and special functions

k� � �k absolute tensor value, the norm kGk of any ten-
sor G is defined by kGk = [tr(GGT)]1/2

$ nabla operator
MAX (. . .) returns the maximum from a given set
MIN (. . .) returns the minimum from a given set
sgn . . . returns ±1 according to the sign of a given argu-

ment
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vorticity leads to the misrepresentation of vortex geometry.
Moreover, vortex geometry depends on the vorticity
threshold applied.

The most widely used local methods for vortex identifica-
tion are based on the analysis of the velocity-gradient tensor
$u = S + X, its symmetric and antisymmetric parts, strain-
rate tensor S and vorticity tensor X, respectively, and the
three invariants of $u. Truesdell (1953) was the first to
describe a quantitative measure of rotation in terms of X
and S normalizing the magnitude of the vorticity tensor by
the magnitude of the strain-rate tensor (the so-called kine-
matic vorticity number). However, this measure does not
discriminate between vortices with small vorticity in a flow
with small shear and vortices with large vorticity in a flow
with large shear (Jeong and Hussain, 1995; Geers et al.,
2005). The analysis of $u provides a rational basis for vortex
identification and the general classification of 3D flow fields
(Chong et al., 1990). The application of complex measures
derived from $u has already revealed its importance for
the description of large-scale vortical structures in turbulent
free shear flows as well as turbulent boundary-layer flows.
The identification of coherent vortices on the basis of direct
numerical simulation (DNS) and large-eddy simulation
(LES) of turbulent flows has become particularly important
(e.g. Dubief and Delcayre, 2000; Lesieur et al., 2003; Garcı́a-
Villalba et al., 2006). In the following section the most pop-
ular identification criteria are shortly described. Needless to
say, these criteria are Galilean invariant.

In Section 3, some other – more recent – identification
methods and discussions about vortex definition are sur-
veyed with a particular emphasis on the applicability limi-
tations of various schemes. New general requirements for
vortex identification are summarized and other natural
requirements are pointed out.

In Sections 4 and 5, the vortex-identification outcome of
the proposed triple decomposition of the relative motion
near a point is presented and discussed on the background
of previous methods and general identification requirements.
Illustrative examples of this novel approach are included.

2. The most widely used local vortex-identification criteria

A vortex obviously represents a non-local flow phenom-
enon in space and time. However, as noted by Chakraborty
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et al. (2005), the presence of viscosity in real fluids results in
the continuity of the kinematic features of the flow field.
Consequently, a reasonable estimate of some non-local
vortical features can be inferred from the local (pointwise,
applied point by point) methods and characteristics.
2.1. Q-criterion

Hunt et al. (1988) identify vortices of an incompressible
flow as connected fluid regions with a positive second
invariant of $u (in tensor notation below the subscript
comma denotes differentiation)

Q � 1

2
ðu2

i;i � ui;juj;iÞ ¼ �
1

2
ui;juj;i ¼

1

2
ðkXk2 � kSk2Þ > 0;

ð1Þ

that is, as the regions where the vorticity magnitude pre-
vails over the strain-rate magnitude. The norm (or absolute
tensor value) kGk of any tensor G is defined by
kGk = [tr(GGT)]1/2. In addition, the pressure in the vortex
region is required to be lower than the ambient pressure.
2.2. D-criterion

Dallmann (1983), Vollmers et al. (1983), and Chong
et al. (1990) define vortices as the regions in which the
eigenvalues of $u are complex (a pair of complex-conjugate
eigenvalues occurs) and the streamline pattern is spiralling
or closed in a local reference frame moving with the point.
Such points can be viewed within the critical-point theory –
on a plane spanned by the complex eigenvectors – as ellip-
tic ones (focus or centre). For incompressible flows, this
requirement reads

D ¼ Q
3

� �3

þ R
2

� �2

> 0; ð2Þ

where Q and R are the invariants of $u, Q is given by (1),
R � Det(ui,j). Q and R play a key role in the reduced (due
to incompressibility) characteristic equation for the eigen-
values k of $u: k3 + Qk � R = 0.
2.3. k2-criterion

The approach of Jeong and Hussain (1995) is formu-
lated on dynamic considerations, namely on the search
for a pressure minimum across the vortex. By taking the
gradient of the Navier–Stokes equations and by decompos-
ing it into symmetric and antisymmetric parts they derive
the well-known vorticity transport equation and the
strain-rate transport equation. The latter reads

DSij

Dt
� mSij;kk þ XikXkj þ SikSkj ¼ �

1

q
p;ij; ð3Þ

where the pressure Hessian p,ij contains information on
local pressure extrema. The occurrence of a local pressure
minimum in a plane across the vortex requires two positive
eigenvalues of the tensor p,ij.

By removing the unsteady irrotational straining and vis-
cous effects from the strain-rate transport equation (3) one
yields the vortex-identification criterion for incompressible
fluids in terms of two negative eigenvalues of S2 + X2. The
existence of a local pressure minimum is neither a sufficient
nor a necessary condition for the presence of a vortex in
general, and the two removed terms from the Eq. (3) are
found to be the main cause of this inaccuracy. Finally, a
vortex is defined as a connected fluid region with two neg-
ative eigenvalues of S2 + X2. Since the tensor S2 + X2 is
symmetric, it has real eigenvalues only. If these eigenvalues
are ordered as follows, k1 P k2 P k3, the vortex-identifica-
tion criterion is equivalent to the resulting condition k2 < 0.

3. Other vortex-identification approaches,

new requirements and limitations

The papers mentioned in the preceding section have
stimulated new and significant research activity during last
decade. Some other, more recent, vortex-identification
methods and discussions on vortex definition are briefly
surveyed below. New requirements for vortex-identifica-
tion schemes are summarized at the end of this section.

Kida and Miura (1998), similarly to Jeong and Hussain
(1995), point out that a swirling motion is not always asso-
ciated with a sectional pressure minimum. This aspect has
motivated these authors to improve the pressure-minimum
scheme by imposing a kinematic swirl condition and they
have constructed the central axes of vortices by the sec-
tional-swirl-and-pressure-minimum scheme for the identifi-
cation of the low-pressure vortices in freely decaying
homogeneous turbulence. As noted by Wu et al. (2005),
an extremal condition adopted by Kida and Miura (1998)
for low-pressure vortices is necessary for identifying a
single line as the vortex axis.

In the eduction of longitudinal vortices in wall-turbu-
lence, Jeong et al. (1997) employ a non-zero threshold for
k2 contrary to the k2-criterion. This practical aspect is
emphasized by Kida and Miura (1998), as well as by Lin
et al. (1996) in their study of a neutrally stratified planetary
boundary-layer flow.

For compressible flows, the Q-criterion suffers from
ambiguity as it offers two ways of extension which have dif-
ferent physical meaning, the second invariant of $u and the
quantity ðkXk2 � kSk2Þ=2. Both choices cannot basically
avoid dependence on a non-zero divergence. The k2-crite-
rion has been originally tailored for incompressible flows.
In the case of compressible fluids, additional terms occur
on the LHS of the Eq. (3) as shown by Cucitore et al.
(1999) who examined the k2-criterion. The use of S2 + X2

as an approximation of the pressure Hessian p,ij for com-
pressible fluids requires discarding other terms besides the
unsteady irrotational straining and viscous effects origi-
nally removed from the strain-rate transport Eq. (3) valid
for incompressible flows only. These additional terms are
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related to a non-zero divergence and non-zero density
gradients.

Another aspect worth mentioning is that all the methods
based on the analysis of $u are pointwise providing local
vortex-identification criteria. This aspect has led Cucitore
et al. (1999) to introduce the concept of non-locality for
determining the vortices as structures. They suggest a
non-local, Galilean-invariant identification technique. The
reason is that the use of local procedures often selects a
particular privileged direction which is considered as the
vortex axis. For example, the k2-criterion captures the pres-
sure minimum in a plane across the vortex but not along it.
The non-local criterion of Cucitore et al. (1999) is based on
the intuitive notion that the particles inside a vortical struc-
ture show small variations in their relative distance even
when following completely different trajectories.

Zhou et al. (1999) use the imaginary part of the complex
eigenvalue of $u to visualize vortices and to quantify the
strength of the local swirling motion inside the vortex
(the so-called swirling-strength criterion). Their method is
based on the D-criterion, however, it identifies not only
the vortex region (equivalently as the D-criterion), but also
the local strength and the local plane of swirling. For a sim-
ilar approach based on complex eigenvalues, see Berdahl
and Thompson (1993). The associated instantaneous-
streamline analysis is further developed in Chakraborty
et al. (2005). Their criterion enhances the swirling-strength
criterion by including a local approximation of the non-
local property proposed by Cucitore et al. (1999), requiring
that the swirling material points inside a vortex have
bounded separation remaining small. Moreover, Chakra-
borty et al. (2005) study the relationship between local
identification schemes. They show that all of the discussed
local criteria, given the proposed usage of threshold, result
in a remarkable vortex similarity.

The evaluation of vortex-identification criteria by com-
paring the resulting vortex patterns in numerically simu-
lated complex vortical flows cannot lead to a final choice
for the correct criterion as the judgment depends on the
adopted intuitive and subjective concept of the investigator
on what should be called a vortex, as pointed out by Wu
et al. (2005). Instead of numerical examples they make an
analytical diagnosis of four local criteria, demonstrated by
the Burgers and Sullivan vortex, indicating that Q-criterion
and k2-criterion may cut a connected vortex into broken
segments at locations with strong axial stretching. Conse-
quently, the following requirements are emphasized: a gen-
erally applicable vortex definition should be able to identify
the vortex axis and allow for an arbitrary axial strain. Note
that all of the local criteria described in Section 2 identify
just a vortex region through criterial inequalities without
specifying the vortex axis inside this region. Wu et al.
(2005) state that an equality is necessary for identifying a
single line as the vortex axis. Recall that the extremal con-
dition of Kida and Miura (1998) enables us to find the vor-
tex skeleton by tracing the lines of the sectional pressure
minimum, provided that a swirl condition is satisfied.
Xiong et al. (2004) define a vortex as follows: if all the
fluid particles within the area in the plane normal to the
vorticity direction have the rotational velocity components
in the same direction around any point in the area, the area
is identified as a part of a vortex. They clearly state that the
validation of the vortex definition using flow examples is
not rigorous because of a prejudice of expecting what is a

priori a vortex. Examples only suffice to invalidate but
not support an idea. Xiong et al. (2004) emphasize that a
method of vortex identification should be evaluated by
whether there is a clear physical meaning in the vortex def-
inition and that the vortex-identification method should be
chosen by which characteristics the definition focuses on.

The fact that all of the most widely used vortex defini-
tions are not objective relative to an arbitrarily rotating ref-
erence frame has motivated Haller (2005) to develop an
objective frame-independent definition of a vortex based
on Lagrangian stability considerations. An incompressible
vortex is defined as a set of fluid trajectories along which
the strain acceleration tensor is indefinite over directions
of zero strain. This definition should help in situations
where there is an unclear choice for a reference frame
(for example, vortical flows in rotating tanks).

Zhang and Choudhury (2006) formulate a Galilean-
invariant scheme, eigen helicity density, based on the con-
cept of Galilean-variant helicity density adopted earlier by
Levy et al. (1990) for the graphical representation of 3D
flow fields that contain concentrated vortices. Their scheme
shows a promise to identify vortices in 3D compressible,
variable-density flows governed by the baroclinic term
(i.e. the normalized cross product of a density gradient
and pressure gradient) in the vorticity equation.

The above mentioned new requirements for vortex-iden-
tification schemes and their underlying criterial quantities
can be summarized as follows:

• validity for compressible flows,
• validity for variable-density flows,
• avoidance of the subjective choice of threshold in the

vortex-boundary identification,
• determination of the local intensity of the swirling

motion (to describe the inner structure of a vortex),
• vortex-axis identification,
• allowance for an arbitrary axial strain,
• non-local properties,
• ability to provide the same results in different rotating

frames (to fulfil material objectivity or frame indifference,
i.e. both translational and rotational independence, see
e.g. Leigh, 1968).

Though most of these requirements are intuitively clear,
some of them may need further justification. For example,
the allowance for an arbitrary axial strain has become a
subject of recent debate (Chakraborty et al., 2006; Wu
et al., 2006).

As to the local intensity of the swirling motion, engineer-
ing practice may frequently need this local quantity to be
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Fig. 1. Qualitative model of three elementary motions of the TDM.
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easily integrable across the vortex region in order to obtain
the integral strength of a vortex. However, the application
of conventional circulation C (calculated as a surface quad-
rature of vorticity) for this purpose is in fact misleading as
the vorticity is misrepresenting the local intensity of the
actual swirling motion of a vortex. For example, one
obtains a net circulation for the region of a simple linear
shearing motion due to a net vorticity.

Furthermore, another requirement – much more trivi-
ally looking than the integral strength of a vortex – is swirl
orientation. Vorticity may answer the question regarding
the swirl orientation in simple problems, however, the local
angle between the vortex-axis tangent and the vorticity vec-
tor may reach large values due to a strong shearing aligned
with the vortex axis (e.g. streamwise vortical structures in a
turbulent boundary layer). This requirement becomes par-
ticularly important in complex 3D vortical flows subjected
to high shear.

As noted by Kida and Miura (1998), it is impossible for
the isosurface representation of a scalar field (applied in
vortex identification) to distinguish between individual vor-
tical structures. This is especially the problem of homo-
geneous turbulence. To avoid ambiguity and vortex
overlaps, the explicit vortex-axis requirements are pro-
posed below.

These additional requirements are quite natural and,
therefore, added to those already mentioned:

• swirl orientation,
• determination of the (integral) vortex strength,
• vortex-axis requirements: existence and uniqueness for

each connected vortex region (to avoid ambiguity and
vortex overlaps).

4. Triple decomposition of the relative motion near a point

and vortex identification

4.1. Triple decomposition of the relative motion near a point

The conventional double decomposition of motion near
a point into a pure irrotational straining motion along the
principal axes of the rate of strain tensor (generally includ-
ing a uniform dilatation) and a rigid-body rotation
expressed by $u = S + X has a long history and stems
from the Cauchy–Stokes decomposition theorem (first
explicitly stated by Stokes, 1845, according to Truesdell
and Toupin, 1960). Basic kinematics in this regard can be
found in many textbooks (e.g. Batchelor, 1967; Panton,
1984).

The triple decomposition of the relative motion near a
point (TDM) has been motivated by the fact that vorticity
cannot distinguish between pure shearing motions and the
actual swirling motion of a vortex. Analogously, strain rate
cannot distinguish between straining motions and shearing
motions. These problems indicate that the double decom-
position may not satisfy all of today’s needs of fluid
mechanics. The aim of the TDM is to decompose an arbi-
trary instantaneous state of the relative motion near a
point into three elementary motions, each described by
an additive part of $u with a distinct tensor character,
explicitly including a pure shearing motion. Therefore,
the present decomposition method is – including its vor-
tex-identification outcome – based on the extraction of a
so-called ‘‘effective’’ pure shearing motion. The TDM is
expressed through the corresponding triple decomposition
of $u introduced in Kolář (2004).

To discuss all of the main aspects of the TDM in 3D
flows is far beyond the scope of this contribution and the
research in this regard is incomplete due to its complexity
(see also the final remark at the end of this subsection).
However, its planar version – including the application to
vortex identification – is very illustrative. Particularly, a
straightforward comparison with the most widely used vor-
tex-identification methods is provided for planar flows in
Section 5.

The qualitative model of three elementary motions of
the TDM is depicted in Fig. 1. The deformable fluid ele-
ment in Fig. 1 consists of discrete undeformable material
points in terms of which the local rate of deformation is
described through their relative motion. The material point
represents – in the present context – ‘‘much less than a fluid
element’’ and generally allows translation and rotation
only. A pure shearing motion near a point is interpreted
in terms of the parallel relative motion of non-rotating
undeformed shearing elements – planes, lines, or points
(depending on flow complexity in 3D).
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A pure shearing motion in Fig. 1 is not a mere combina-
tion of an irrotational straining motion with a rigid-body
rotation as in the case of the double decomposition. This
fact can be easily checked through the rotational change
of material points which remains zero for a pure shearing
motion within the proposed qualitative model of the
TDM. The rotational change of material points is just
the quantity reflecting the actual swirling motion of a vor-
tex: note that both an irrotational straining and a pure
shearing motion do not contribute to this rotational change
(at least according to the present approach).

Although we focus below on planar flows, it is conve-
nient to introduce the quantitative TDM algorithm using
3D formalism. The TDM distinguishes three different ele-
mentary motions near a point, each defined in terms of a
distinct tensor structure. The TDM reads

ru ¼ ðruÞEL þ ðruÞRR þ ðruÞSH; ð4Þ

where an irrotational straining motion is given by the sym-
metric tensor ($u)EL (subscript ‘‘EL’’ denotes elongation),
a rigid-body rotation (denoted by ‘‘RR’’) is given by the
antisymmetric tensor ($u)RR, and an effective pure shearing
motion (denoted by ‘‘SH’’) is described by the ‘‘purely
asymmetric tensor form’’ ($u)SH its components ui,j fulfill-
ing in a suitable reference frame

ui;j ¼ 0 OR uj;i ¼ 0 ðfor all i; jÞ ð5Þ
with the implication

ui;juj;i ¼ 0 ðno summationÞ:

The condition (5) requires zeros on the leading diagonal
and, moreover, at least one off-diagonal element from each
pair must be zero as well. If the frame showing the tensor in
form (5) exists, the tensor is – by definition – purely asym-
metric. The tensor structures represented by (5) are, for
example,

0 � 0

0 0 0

0 0 0

0
B@

1
CA;

0 0 0

� 0 0

� 0 0

0
B@

1
CA;

0 0 0

� 0 �
0 0 0

0
B@

1
CA;

0 0 �
� 0 0

0 0 0

0
B@

1
CA;

0 � 0

0 0 �
0 0 0

0
B@

1
CA;

0 0 �
0 0 0

0 � 0

0
B@

1
CA;

0 0 0

� 0 0

� � 0

0
B@

1
CA;

0 � �
0 0 0

0 � 0

0
B@

1
CA;

0 � 0

0 0 �
� 0 0

0
B@

1
CA:

While the symmetric-tensor condition (specifying an
irrotational straining motion)

ui;j ¼ uj;i ðfor all i; jÞ ð6Þ
with the implication

ui;juj;i P 0 ðno summationÞ

and the antisymmetric-tensor condition (specifying a rigid-
body rotation)
ui;j ¼ �uj;i ðfor all i; jÞ ð7Þ
with the implication

ui;juj;i 6 0 ðno summationÞ

are fulfilled in an arbitrary reference frame rotated under an
orthogonal transformation, the condition (5) for the purely

asymmetric tensor is satisfied in a suitable reference frame

only. In this reference frame, a straightforward consequence
of (5) is that the strain-rate and vorticity magnitudes are in
strict equilibrium, component by component, as the rela-
tion jSijj = jXijj holds for all i, j. Further, the condition (5)
implies the equality kSk = kXk valid in an arbitrary refer-
ence frame (it does not hold vice versa). The condition (5)
defines – at least within the present paper – the purely asym-

metric tensor with respect to second-order tensors and,
moreover, it defines a general structure of a pure shearing
motion with respect to flow kinematics near a point.

The above stated decomposition requirements are
apparently insufficient. Considering ($u)SH, the condition
(5) is a necessary condition only as it characterizes just a
pure shearing motion without specifying the label ‘‘effec-

tive’’. What we really need is a physically well-justified
algorithm leading to a unique decomposition. The ‘‘shear
tensor’’ satisfying the condition (5) can be easily generated
by the natural and straightforward decomposition scheme
which is applicable to an arbitrary reference frame

ru �
ux uy uz

vx vy vz

wx wy wz

0
B@

1
CA ¼ residual

tensor

� �
þ

shear

tensor

� �
;

ð8aÞ

where the residual tensor is given by

residual

tensor

� �
¼

ux ðsgnuyÞMINðjuy j; jvxjÞ �
ðsgnvxÞMINðjuy j; jvxjÞ vy �

� � wz

0
B@

1
CA:
ð8bÞ

In (8a,b) the following simplified notation is employed:
u; v; w are velocity components, subscripts x; y; z stand
for partial derivatives. The remaining two non-specified
pairs of off-diagonal elements of the residual tensor in
(8b) are constructed strictly analogously as the specified
one, each pair being either symmetric or antisymmetric.
Just a simple quantitative example:

�1 15 17

3 8 �14

�26 �14 �5

0
B@

1
CA¼

�1 3 17

3 8 �14

�17 �14 �5

0
B@

1
CAþ

0 12 0

0 0 0

�9 0 0

0
B@

1
CA:

If considered separately, an arbitrary shearing motion
should be, by (5), recognized in a suitable reference frame

as a third elementary part of the TDM. Finding a mini-
mum of the norm of the residual tensor within the scheme
(8a,b) by changing the reference frame under an orthogo-
nal transformation guarantees to satisfy this necessary
requirement and leads to the correct frame choice (to
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perform the desired decomposition). This condition says
that the effect of the extraction of the shear tensor from
$u is maximized.

The TDM is closely associated with the so-called basic

reference frame (BRF) where it is performed as the three
separate parts of $u are generated just here through the
decomposition scheme (8a,b), where the residual tensor is
to be further decomposed into its symmetric and antisym-
metric parts representing ($u)EL and ($u)RR. However, the
decomposition results generated in the BRF are valid for
all other frames rotated (not rotating!) with respect to the
BRF under an orthogonal transformation. In the BRF,
an effective pure shearing motion is shown in a clearly vis-
ible manner described by the form (5) on condition that the
norm of the residual tensor in (8a,b) is minimized. That is,
consistently with the limiting case mentioned in the preced-
ing paragraph, on condition that the effect of the extraction
of the shear tensor is maximized. This is the reason to label
the obtained shearing motion with the term ‘‘effective’’.
Considering the following relation expressed in terms of
the strain-rate and vorticity tensors, S and X, and valid
in an arbitrary reference frame,

residual

tensor

� �����
����

2

þ 4ðjS12X12j þ jS23X23j þ jS31X31jÞ ¼ kruk2
;

ð9Þ
where k$uk remains unchanged under an orthogonal trans-
formation and, consequently, the definition condition of
the BRF takes the form

½jS12X12j þ jS23X23j þ jS31X31j�BRF

¼MAXð½jS12X12j þ jS23X23j þ jS31X31j�ALL FRAMESÞ:
ð10Þ

The condition (10) says that – by changing the reference
frame under an orthogonal transformation Q – we are
choosing from all frames mutually rotated (not rotating!)
the frame in which the quantity jS12X12j þ jS23X23j þ
jS31X31j attains its maximum. In practice, though the num-
ber of frames is infinite, the determination of the BRF
should be based on a finite set of discrete frame representa-
tions. By considering a reasonable angle resolution (for
example, one degree or less) we proceed to the BRF
approximation with reasonably high precision. The trans-
formation matrix Q for an arbitrarily rotated Cartesian
coordinate system can be obtained by a sequence of three
rotational transformations, see Appendix A.

The orientation of the BRF (and, consequently, the ori-
entation of an effective pure shearing motion) is a local
aspect of the flow field, similarly as the orientation of prin-
cipal axes. However, note that the BRF, unlike the system
of principal axes of S, is determined simultaneously on the
basis of S and X through the ‘‘interaction scalar’’
jS12X12j þ jS23X23j þ jS31X31j.

It is worth mentioning that the application of a qualita-
tively different frame-choice criterion maximizing directly
the magnitude of a pure shearing motion, that is, maximi-
zing
shear
tensor

� �����
����, leads to an ambiguous decomposition

algorithm, even for 2D fluid motion. This criterion takes
into account only the magnitude of a pure shearing motion,
not its effect (i.e. its impact on $u after the extraction) in
full which includes the shearing structure and orientation
of shearing elements (planes, lines, or points). Further, by
changing the present frame-choice criterion based on
jS12X12j þ jS23X23j þ jS31X31j quantitatively to the other
extreme value, namely by choosing the shear-free frame
by requiring jS12X12j þ jS23X23j þ jS31X31j ¼ 0, the decom-
position scheme (8a,b) leads to the well-known double-
decomposition results. In this case, the principal axes of
S represent the desired shear-free frame (though this frame
is not always the only shear-free frame for a given tensor
data).

The TDM algorithm consists of the following three
steps (a uniform dilatation does not affect the interaction
scalar in the condition (10) and can be removed prior to
a further analysis of $u without loss of generality and
applicability to compressible flows):

Step 1: Determination of the BRF satisfying the condi-
tion (10).
Step 2: Decomposition of $u following the scheme
(8a,b); according to the initial scheme (4), the residual
tensor represents the sum ($u)EL + ($u)RR, and the
shear tensor represents ($u)SH.
Step 3: Return to the original (e.g. laboratory) reference
frame: any additive part Ai of $u is described in an arbi-
trary reference frame rotated (not rotating!) with respect
to the BRF under an orthogonal transformation Q by
QAiQ

T as

QðruÞQT ¼ Q
X

i

Ai

 !
QT ¼

X
i

QAiQ
T: ð11Þ

As mentioned earlier, the BRF is a local frame and its
orientation generally changes from point to point (at a
given instant in time). If we wish to see the whole field of
relevant quantities in a common reference frame (e.g. labo-
ratory reference frame) we have to do Step 3.

In the planar case treated below in detail, the uniqueness
of the TDM is obvious.

From the viewpoint of the double decomposition, the
TDM components of $u are certain products of interaction
between S and X. Unlike the two elementary parts of the
double decomposition, the three elementary parts of the
TDM are mutually conditionally balanced. The term
($u)SH is responsible for a specific portion of vorticity
labelled ‘‘shear vorticity’’ and for a specific portion of
strain rate labelled ‘‘shear strain rate’’. The remaining por-
tions are called ‘‘residual vorticity’’ and ‘‘residual strain
rate’’. For the quantitative relation between the TDM
and the double decomposition it holds (subscripts ‘‘SH’’
and ‘‘RES’’ by S and X denote their shear and residual

components, respectively)
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Fig. 2. Geometrical interpretation of 2D fluid motion (incompressible
flow) and the TDM outcome: (a) vorticity components, (b) strain-rate
components.
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ru ¼ ðruÞEL þ ðruÞRR þ ðruÞSH

¼ ðruÞEL þ ðruÞRR þ
1

2
½ðruÞSH þ ððruÞSHÞ

T�

þ 1

2
½ðruÞSH � ððruÞSHÞ

T�

¼ SRES þXRES þ SSH þXSH

¼ ½SRES þ SSH� þ ½XRES þXSH� ¼ SþX: ð12Þ

In the triple decomposition of $u, S and X are cut down
in magnitudes to ‘‘share’’ their portions through the third
term ($u)SH associated with a pure shearing motion as
$u = SRES + XRES + ($u)SH. The proposed tensor decom-
position is applicable to general second-order Cartesian
tensors and may prove its usefulness to problems outside
fluid mechanics.

In planar incompressible flows, the velocity-gradient
tensor $u can be described in an arbitrary reference frame,
in the system of principal axes, and in the above mentioned
BRF as follows:

ux uy 0

vx �ux 0

0 0 0

0
BB@

1
CCA!

s �x 0

x �s 0

0 0 0

0
BB@

1
CCA

PRINCIPAL
AXES

!

0 s�x 0

sþx 0 0

0 0 0

0
BB@

1
CCA

BRF

;

ð13Þ

where s (i.e. the 2D principal rate of strain) and x (i.e. the
vorticity-tensor component in 2D) fulfil the relations

jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2

x þ ðuy þ vxÞ2
q� ��

2; ð14Þ

x ¼ ðvx � uyÞ=2: ð15Þ

In the BRF, there are two different relative rotational
orientations of uy dy and vx dx, the same and the opposite,
see Fig. 2. In Fig. 2a vorticity dominates strain rate. The
characteristic angles, a1 and a2, correspond to the residual

vorticity xRES (associated with the rigid-body rotation)
and shear vorticity xSH (associated with the pure shearing
motion) while their sum is proportional to the total vortic-
ity x. In Fig. 2b strain rate dominates vorticity. The char-
acteristic angles, b1 and b2, correspond to the residual

strain rate sRES and shear strain rate sSH while their sum
is proportional to the total strain rate s. Note that xRES

and xSH have the same signs in the BRF due to the alge-
braic structure of (8a,b). The same holds for sRES and
sSH. The same signs indicate a non-destructive nature of
the superimposing construction in Fig. 2. The virtual
superposition is applicable to infinitesimal motional
changes only. For both rotational orientations, the magni-
tude of the superimposed shearing motion is given by the
difference of the absolute values of uy and vx. In planar
flows, a non-zero xRES apparently existing only for the
same rotational orientation of uy dy and vx dx, see Fig. 2,
excludes the existence of a non-zero sRES existing only for
the opposite rotational orientation of uy dy and vx dx.
By combining the qualitative model of elementary
motions of the TDM depicted in Fig. 1 with the situation
in 2D flows according to Fig. 2a, it follows that the resid-

ual vorticity can be interpreted in terms of (twice) the
angular velocity of material points due to the rigid-body
rotation, the shear vorticity in terms of (twice) the average
angular velocity of the fluid element due to the shearing
part of motion only while the conventional vorticity in
terms of (twice) the average angular velocity of the fluid
element.

Elementary parts of the TDM and flow patterns for
various flow situations in 2D fluid motion (incompressible
flow) are shown in Fig. 3. All possible flow configurations
near a point for fixed uy and variable vx are depicted in
the corresponding BRFs showing an effective pure shear-
ing motion in a clearly visible manner. The reference
points themselves can be described as critical points and
the local flow patterns correspond to the leading terms
of a Taylor series expansion for the velocity field in terms
of space coordinates (Perry and Chong, 1987; Chong
et al., 1990).

In 2D flows, with respect to (13) showing explicitly the
desired tensor components in the BRF in terms of s and
x, with respect to the algebraic structure of the decompo-
sition (8a,b), and assuming jsjP jxj or jsj 6 jxj the follow-
ing set of relations can be derived for s and x, and their
residual and shear components (the case jsj = jxj represents
a simple shear)
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s ¼ sRES þ sSH; ð16Þ
jsj ¼ jsRESj þ jsSHj; ð17Þ
sSH ¼ ðsgn sÞjxj for jsjP jxj; ð18Þ
sSH ¼ s for jsj 6 jxj; ð19Þ
sRES ¼ s� sSH ¼ ðsgn sÞ½jsj � jxj� for jsjP jxj; ð20Þ
sRES ¼ s� sSH ¼ 0 for jsj 6 jxj; ð21Þ
x ¼ xRES þ xSH; ð22Þ
jxj ¼ jxRESj þ jxSHj; ð23Þ
xSH ¼ x for jsjP jxj; ð24Þ
xSH ¼ ðsgnxÞjsj for jsj 6 jxj; ð25Þ
xRES ¼ x� xSH ¼ 0 for jsjP jxj; ð26Þ
xRES ¼ x� xSH ¼ ðsgnxÞ½jxj � jsj� for jsj 6 jxj: ð27Þ

As can be inferred from (27), the magnitude of planar
residual vorticity represents nothing but the simplest mea-
sure of the dominance of planar vorticity magnitude over
planar strain-rate magnitude. Analogously, from (20), the
magnitude of planar residual strain rate is nothing but
the simplest measure of the dominance of planar strain-rate
magnitude over planar vorticity magnitude.
The final remark in this subsection deals with general
3D data. Extensive numerical tests of 3D tensor data indi-
cate that the BRF is unique for local 3D flows near a point
without planar or rotational symmetries of $u at the point.
However, even assuming tensor data leading to different
BRFs, the TDM may still be unique provided that different
BRFs lead to the same TDM results. For example, an arbi-
trary symmetric or antisymmetric tensor is associated with
an infinite number of BRFs, each showing the same decom-
position results. The 3D aspects of the TDM need further
investigation.

4.2. Vortex identification

The vortex-identification outcome of the TDM reads: a
vortex is defined as a connected fluid region with a non-
zero magnitude of the residual vorticity. A vortex axis is
given in a plane across the vortex (but not along it) by
the point of a maximum magnitude of the residual vorticity
vector which is a tangent of the vortex axis at this point. In
the planar-flow context, using (26) and (27), the vortex
regions are characterized by the non-zero residual vorticity
for jsj < jxj, see the application (Kolář, 2004) to the plane
turbulent near wake of two side-by-side square cylinders
(data from Kolář et al., 1997). It should be mentioned that
the residual vorticity in 2D problems does not change its
orientation perpendicular to the flow plane. Therefore
Steps 1 and 3 of the TDM algorithm do not need to be per-
formed. However, considering the strain-rate decomposi-
tion even for a planar case, if we are interested not only
in the magnitude of strain-rate components as given by
(18)–(21) but also in the orientation of shearing planes,
we cannot avoid Steps 1 and 3 of the TDM algorithm.

Fig. 4 shows the quasi-2D secondary-flow vortex geom-
etry, namely the contrarotating vortex pair, in three down-
stream cross-sections of a single jet in crossflow (JICF),
data from Kolář et al. (2000). A low threshold applied
in Fig. 4 has no physical but numerical reasons only (to
avoid staircase outer contours of the residual vorticity).
Also note that for an arbitrarily chosen threshold level
the region of the residual vorticity forms a subdomain of
the vorticity region. The JICF vortex geometry is on aver-
age nearly circular in terms of (streamwise) xRES some-
what resembling the geometry of an ideal isolated single-
fluid viscous vortex. It can be inferred from Fig. 4 that
a prolonged shape of (streamwise) vorticity contours is
closely associated with the relatively strong shearing effect
of the flow through the ‘‘gap’’ between vortices along the
centreline of the contrarotating vortex pair. Unlike the
residual vorticity, the total vorticity of the inner vortex
region (approximately between the residual-vorticity max-
imum and the centreline of the contrarotating vortex pair)
inevitably absorbs this shearing effect by increasing its
magnitude. Consequently, the transverse (i.e. y) vorticity
gradient of the inner vortex region is higher in comparison
with the outer vortex region which is relatively less
affected by the ‘‘gap-like flow’’.
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The employed additive vorticity decomposition implies
a corresponding surface-quadrature decomposition. The
circulation (strictly said, a portion of total circulation C)
based on residual vorticity can be obtained by integration.
This quantity represents the (integral) vortex strength.

5. Discussion

The idea of vorticity decomposition has its own history,
though much shorter than the decomposition of motion. It
is almost 50 years old, see Astarita (1979), Wedgewood
(1999) and the references therein. The result of the Gies-
ekus–Harnoy–Drouot decomposition (this terminology is
adopted following Wedgewood, 1999), namely the objective

portion of X obtained with respect to the principal axes of
S, is proposed by Astarita (1979) for a flow classification.
Wedgewood (1999) derives a new vorticity decomposition
into two parts, the so-called deformational vorticity and
the rigid vorticity. His analysis employs the cross product
of a particle’s velocity and acceleration, u · Du/Dt, and
leads to the evolution equation for the objective deforma-
tional vorticity. The solution of the ‘Wedgewood equation’
which depends on both space and time derivatives of $u is
proposed to develop objective constitutive equations for
complex rheological fluids.

It should be emphasized that the present vorticity
decomposition into the shear vorticity and the residual

one is based on the decomposition of motion through the
decomposition of a $u-field ‘‘frozen’’ at a given instant in
time. The corresponding vortex-identification method rep-
resents a certain qualitative ‘‘comeback’’ of vorticity,
namely its specific portion, the residual vorticity. In view
of the requirements summarized in Section 3, note that
the residual vorticity retains all of the very useful vorticity
features – Galilean invariance, vectorial character (direc-
tion and orientation), applicability to compressible flows
and variable-density flows, easy integrability across an
arbitrary surface area, etc. – and satisfies most of the gen-
eral requirements for vortex identification. Unlike vortic-
ity, the residual vorticity distinguishes between pure
shearing motions and the actual swirling motion of a vor-
tex and, consequently, it correctly captures vortical motion
near a wall by diminishing to zero at the wall. On the other
hand, the residual vorticity is still a local quantity, more-
over, not invariant with respect to rotating reference
frames.

In planar incompressible flows, all of the local criteria
described in Section 2 degenerate to the same one (Jeong
and Hussain, 1995; Wu et al., 2005) identifying the vortex
region by the condition x2 � s2 > 0 implying that vorticity
dominates strain rate. This criterion corresponds to the
Weiss criterion (Weiss, 1991; Basdevant and Philipovitch,
1994) for elliptic flow regions and can be geometrically
interpreted as the region of positive unnormalized Gauss-
ian curvature of the stream function (Dresselhaus and
Tabor, 1989). The swirling strength of Zhou et al. (1999)
is equal in 2D motion to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � s2
p

. The conventional iden-
tifier, positive x2 � s2, and the proposed residual vorticity
are examined below as possible candidates for vortex-axis
identification and for characterizing the local intensity of
a vortex. Due to the two-dimensionality of the testcase
examined below, the term ‘‘vortex centre’’ is employed
instead of ‘‘vortex axis’’.

The kinematically consistent model of a planar vortex-
shear interaction employed below provides a fair basis
for obtaining correct qualitative results in vortex identifica-
tion. The examined planar $u-field is formed by super-
imposing two linear shearing effects of a Gaussian
distribution located symmetrically at y = ±0.5 given by

uSHEARING
y ¼�K exp � y�0:5

r

� �2
" #

þ exp � yþ0:5

r

� �2
" # !

;

ð28Þ

onto the $u-field of an ideal axisymmetric (counterclock-
wise) Taylor vortex centred at (0, 0) described by the tan-
gential velocity distribution of the form (r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
)

V VORTEX
tangential ¼ Cr expð�r2Þ: ð29Þ

All parameters in (28) and (29) are positive. The vortex-
strength parameter C was set for simplicity to be C = 1 and
the shearing parameter r was set to be r = 1/4 (both
parameters are fixed within the present analysis). The plac-
ing of two shearing effects makes the examination proce-
dure much more illustrative than using only one.

Three vortex characteristics – vorticity, positive x2 � s2

(i.e. the conventional planar-flow vortex-identification
measure) and the residual vorticity – are compared in
Fig. 5 for different values of the shearing-strength parame-
ter K, namely K = 0, 2, 10. The distribution of positive
x2 � s2 exhibits the formation of a double peak quite sim-
ilar to that of vorticity distribution. For large shearing val-
ues, K� 1, the peak magnitudes of both vorticity and
positive x2 � s2 are adequately large and the locations of
peak values ultimately attain the locations of shearing max-
ima at y = ±0.5. This causes an inevitable ambiguity in
defining the vortex centre in terms of vorticity as well as
x2 � s2 by using the natural extremal condition, as dis-
cussed in Section 3. The identification of a vortex in terms
of the non-zero residual vorticity indicates that this criterial
quantity provides an identical vortex boundary as the posi-
tive x2 � s2. However, there is no ambiguity in defining the
vortex-centre location as the characteristic peak value of
the residual vorticity remains at the original centred posi-
tion (for K = 0) independently of the strength of a superim-
posed shearing and its magnitude remains for K� 1
unchanged as well.

It is shown in Fig. 5 that the conventional criterial quan-
tity, positive x2 � s2, satisfactorily identifying the overall
vortex region fails – unlike xRES – to describe the vortex
centre correctly (in terms of the location and magnitude
of the peak value) provided that a pure shearing motion
superimposed onto an ideal axisymmetric vortex is not neg-
ligible. This quantity cannot represent the local intensity of
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Fig. 5. Description of a planar vortex-shear interaction in terms of different vortex characteristics.
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a vortex due to the strong inherent bias towards [jxj + jsj]
expressed by

x2 � s2 ¼ ðsgnxÞ½jxj � jsj� � ðsgnxÞ½jxj þ jsj�
¼ xRES � ðxþ xSHÞ for jsj < jxj: ð30Þ

The above mentioned bias can be inferred from the
geometry of the local velocity field near a point depicted
in the BRF. The vortex intensity described in terms of
x2 � s2 or, alternatively, xRES is examined in Fig. 6. Either
of these measures requires specific conditions which guar-
antee the same local intensity of the swirling motion at dif-
ferent points of the flow field. Fig. 6 implies that a
superimposed linear shearing onto the rigid-body rotation
near a point (i.e. let L1 > L2, L1 is otherwise arbitrary, L2

is fixed) clearly affects (makes greater) the intensity of the
swirling motion measured by x2 � s2 while xRES remains
unaffected.

The criteria given by positive x2 � s2 and non-zero xRES

are equivalent only at zero threshold as these criterial
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Fig. 7. Virtual motional changes of the fluid element within an ideal
axisymmetric vortex (each at the final stage).
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measures strongly differ in describing the inner structure of
a vortex. The expression (30) explains the coincidence of
the zero contour for x2 � s2 with that for xRES (Fig. 5).
In both cases, this contour represents the boundary of a
vortex. The boundary is, however, only roughly matching
the original axisymmetric boundary of an isolated Taylor
vortex. The reason is that any local schemes based on
pointwise analysis can hardly reveal any virtual non-local

flow components or features exactly.
The TDM, as the local concept, cannot reveal the global

motion of an ideal axisymmetric vortex in concentric shear-
ing layers. However, consistently with the TDM, the
motion of an ideal vortex can be interpreted as the virtual
superposition shown in Fig. 7 (for clarity including a circu-
lar translation) where the residual vorticity and shear vor-
ticity apparently have the same signs. Hence, equally as
in the case of Fig. 2, the superimposing construction in
Fig. 7 is of a non-destructive nature and is applicable to
infinitesimal motional changes only.

Finally, let us have a look at a primary interpretation of
the residual vorticity. In the frame of the TDM, the residual

vorticity can be interpreted in terms of (twice) the angular
velocity of material points (Figs. 1 and 7) due to the resid-
ual rigid-body rotation. Now let us try to formulate a more
conventional interpretation, for simplicity in 2D. Vorticity,
perpendicular to a flow plane through a given point, is
(twice) the mean angular velocity of any two instanta-
neously mutually orthogonal line segments, within the flow
plane, going through the given point and, consequently, it
is (twice) the mean angular velocity of all line segments,
within the flow plane, going through the given point (this
result is attributed to Cauchy, 1841, according to Truesdell
and Toupin, 1960; Truesdell, 1954; Green, 1995). Then the
residual vorticity in 2D can be interpreted in terms of
(twice) the least-absolute-value angular velocity of all line
segments, within the flow plane, going through the given
point. Fig. 3 may help in this regard by considering dashed
lines as the line segments with the minimum and maximum
angular velocities. The residual vorticity is clearly zero for
all the planar cases where strain rate dominates over vortic-
ity as one portion of line segments rotates in one direction
while the other portion of line segments in the opposite
sense and two separating non-rotating line segments exist



V. Kolář / Int. J. Heat and Fluid Flow 28 (2007) 638–652 651
(saddle separatrices in Fig. 3). Further, for a simple shear
one non-rotating line segment exists. The shear vorticity
represents just the difference between (twice) the mean

angular velocity and (twice) the least-absolute-value angu-
lar velocity of all line segments. In 3D, the already stated
quasi-conventional interpretation of both the residual vor-
ticity and the shear one is for equal leading-diagonal ele-
ments applicable to the BRF coordinate directions and
planes, however, not to arbitrarily chosen directions and
planes. Such universality is possessed by the conventional
interpretation of vorticity, strictly said, the vorticity projec-
tion onto the normal of the examined flow plane. The
above introduced interpretation of the residual vorticity is
obviously a good argument for using this measure in vortex
identification.
6. Conclusions

A brief survey of popular vortex-identification methods
is presented on the background of other vortex-identifica-
tion schemes and relevant discussions on vortex definition.
A particular emphasis is put on the summary of new gen-
eral requirements and limitations for any vortex-identifica-
tion schemes and their underlying criterial quantities.

The present paper further suggests that a specific por-
tion of vorticity provides a proper physical quantity for
the kinematic identification of a vortex. On the basis of
the triple decomposition of the relative motion near a
point, the vorticity is decomposed into two parts, shear
Q ¼
cos c sin c 0

� sin c cos c 0

0 0 1

0
B@

1
CA

cos a cos b sin a cos b � sin b

� sin a cos a 0

cos a sin b sin a sin b cos b

0
B@

1
CA

¼
cos a cos b cos c� sin a sin c sin a cos b cos cþ cos a sin c � sin b cos c

� cos a cos b sin c� sin a cos c � sin a cos b sin cþ cos a cos c sin b sin c

cos a sin b sin a sin b cos b

0
B@

1
CA: ðA:3Þ
vorticity and residual vorticity. The latter is associated with
the local residual rigid-body rotation near a point obtained
after the extraction of an effective pure shearing motion
and represents a direct measure of the actual swirling
motion of a vortex. The residual vorticity retains all the
very useful vorticity features and satisfies most of the gen-
eral requirements for vortex identification.
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Appendix A

The transformation matrix Q for an arbitrarily rotated
coordinate frame can be obtained by a sequence of three
rotational (positive counterclockwise) transformations
while the Cartesian coordinate system changes three times,
as follows:

First rotation is around the z-axis by an angle
a; 0 6 a 6 p; ðx; y; zÞ ! ðx�; y�; z�Þ; z� � z,

Q ¼
cos a sin a 0

� sin a cos a 0

0 0 1

0
B@

1
CA: ðA:1Þ

Second rotation is around the y*-axis by an angle
b; 0 6 b 6 p; ðx�; y�; z�Þ ! ðx��; y��; z��Þ; y�� � y�,

Q ¼
cos b 0 � sin b

0 1 0
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Third rotation is around the z**-axis by an angle
c; 0 6 c 6 p=2; ðx��; y��; z��Þ ! ðx��; y��; z��Þ; z�� � z��,
An arbitrary vector v in old coordinates is given by Qv

in new coordinates, an arbitrary tensor G in old coordi-
nates is described by QGQT in new coordinates.
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Cauchy, A.-L., 1841. Mémoire sur les dilatations, les condensations et les
rotations produits par un changement de forme dans un système de
points matériels. Ex. d’An. Phys. Math. 2, 302–330 (Oeuvres (2) 12,
343–377).

Chakraborty, P., Balachandar, S., Adrian, R.J., 2005. On the relationships
between local vortex identification schemes. J. Fluid Mech. 535, 189–
214.

Chakraborty, P., Balachandar, S., Adrian, R.J., 2006. Comment on
‘‘Axial stretching and vortex definition’’ [Phys. Fluids 17, 038108
(2005)]. Phys. Fluids 18, 029101-1–029101-2.

Chong, M.S., Perry, A.E., Cantwell, B.J., 1990. A general classification of
three-dimensional flow fields. Phys. Fluids A 2, 765–777.

Cucitore, R., Quadrio, M., Baron, A., 1999. On the effectiveness and
limitations of local criteria for the identification of a vortex. Eur. J.
Mech. B/Fluids 18, 261–282.

Dallmann, U., 1983. Topological structures of three-dimensional flow
separation. DFVLR-IB Report No. 221-82 A07.

Dresselhaus, E., Tabor, M., 1989. The persistence of strain in dynamical
systems. J. Phys. A: Math. Gen. 22, 971–984.

Dubief, Y., Delcayre, F., 2000. On coherent-vortex identification in
turbulence. J. Turbulence 1, 1–22.
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